Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomater Adv ; 160: 213840, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579520

RESUMO

Combating antimicrobial resistance is one of the biggest health challenges because of the ineffectiveness of standard biocide treatments. This challenge could be approached using natural products, which have demonstrated powerful therapeutics against multidrug-resistant microbes. In the present work, a nanodevice consisting of mesoporous silica nanoparticles loaded with an essential oil component (cinnamaldehyde) and functionalized with the polypeptide ε-poly-l-lysine is developed and used as an antimicrobial agent. In the presence of the corresponding stimuli (i.e., exogenous proteolytic enzymes from bacteria or fungi), the polypeptide is hydrolyzed, and the cinnamaldehyde delivery is enhanced. The nanodevice's release mechanism and efficacy are evaluated in vitro against the pathogenic microorganisms Escherichia coli, Staphylococcus aureus, and Candida albicans. The results demonstrate that the new device increases the delivery of the cinnamaldehyde via a biocontrolled uncapping mechanism triggered by proteolytic enzymes. Moreover, the nanodevice notably improves the antimicrobial efficacy of cinnamaldehyde when compared to the free compound, ca. 52-fold for E. coli, ca. 60-fold for S. aureus, and ca. 7-fold for C. albicans. The enhancement of the antimicrobial activity of the essential oil component is attributed to the decrease of its volatility due to its encapsulation in the porous silica matrix and the increase of its local concentration when released due to the presence of microorganisms.


Assuntos
Acroleína , Acroleína/análogos & derivados , Anti-Infecciosos , Candida albicans , Escherichia coli , Nanopartículas , Dióxido de Silício , Staphylococcus aureus , Acroleína/farmacologia , Acroleína/química , Nanopartículas/química , Escherichia coli/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/administração & dosagem , Porosidade , Testes de Sensibilidade Microbiana , Polilisina/química , Polilisina/farmacologia
2.
Int J Pharm ; 654: 123947, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38408553

RESUMO

Photodynamic Therapy is a therapy based on combining a non-toxic compound, known as photosensitizer (PS), and irradiation with light of the appropriate wavelength to excite the PS molecule. The photon absorption by the PS leads to reactive oxygen species generation and a subsequent oxidative burst that causes cell damage and death. In this work, we report an antimicrobial nanodevice that uses the activity of curcumin (Cur) as a PS for antimicrobial Photodynamic Therapy (aPDT), based on mesoporous silica nanoparticles in which the action of the classical antibiotic PMB is synergistically combined with the aPDT properties of curcumin to combat bacteria. The synergistic effect of the designed gated device in combination with irradiation with blue LED light (470 nm) is evaluated against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis. The results show that the nanodevice exhibits a noteworthy antibacterial activity against these microorganisms, a much more significant effect than free Cur and PMB at equivalent concentrations. Thus, 0.1 µg/mL of MSNs-Cur-PMB eliminates a bacterial concentration of about 105 CFU/mL of E. coli, while 1 µg/mL of MSNs-Cur-PMB is required for P. aeruginosa and S. epidermidis. In addition, antibiofilm activity against the selected bacteria was also tested. We found that 0.1 mg/mL of MSNs-Cur-PMB inhibited 99 % biofilm formation for E. coli, and 1 mg/mL of MSNs-Cur-PMB achieved 90 % and 100 % inhibition of biofilm formation for S. epidermidis and P. aeruginosa, respectively.


Assuntos
Curcumina , Nanopartículas , Fotoquimioterapia , Polimixina B/farmacologia , Curcumina/farmacologia , Dióxido de Silício/farmacologia , Escherichia coli , Biofilmes , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Antibacterianos/farmacologia , Pseudomonas aeruginosa
3.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003350

RESUMO

Mesoporous silica nanoparticles (MSNs) are amongst the most used nanoparticles in biomedicine. However, the potentially toxic effects of MSNs have not yet been fully evaluated, being a controversial matter in research. In this study, bare MSNs, PEGylated MSNs (MSNs-PEG), and galacto-oligosaccharide-functionalized MSNs (MSNs-GAL) are synthesized and characterized to assess their genotoxicity and transforming ability on human lung epithelial BEAS-2B cells in short- (48 h) and long-term (8 weeks) exposure scenarios. Initial short-term treatments show a dose-dependent increase in genotoxicity for MSNs-PEG-treated cells but not oxidative DNA damage for MSNs, MSNs-PEG, or for MSNs-GAL. In addition, after 8 weeks of continuous exposure, neither induced genotoxic nor oxidative DNA is observed. Nevertheless, long-term treatment with MSNs-PEG and MSNs-GAL, but not bare MSNs, induces cell transformation features, as evidenced by the cell's enhanced ability to grow independently of anchorage, to migrate, and to invade. Further, the secretome from cells treated with MSNs and MSNs-GAL, but not MSNs-PEG, shows certain tumor-promoting abilities, increasing the number and size of HeLa cell colonies formed in the indirect soft-agar assay. These results show that MSNs, specifically the functionalized ones, provoke some measurable adverse effects linked to tumorigenesis. These effects are in the order of other nanomaterials, such as carbon nanotubes or cerium dioxide nanoparticles, but they are lower than those provoked by some approved drugs, such as doxorubicin or dexamethasone.


Assuntos
Nanopartículas , Nanotubos de Carbono , Humanos , Células HeLa , Dióxido de Silício/toxicidade , Nanopartículas/toxicidade , Polietilenoglicóis , Porosidade
6.
Nanomaterials (Basel) ; 12(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957126

RESUMO

The low toxicity and high adsorption capacities of clay minerals make them attractive for controlled delivery applications. However, the number of controlled-release studies in the literature using clay minerals is still scarce. In this work, three different clays from the smectite group (Kunipia F, montmorillonite; Sumecton SA, saponite; and Sumecton SWN, hectorite) were successfully loaded with rhodamine B dye and functionalized with oleic acid as a gatekeeper to produce organonanoclays for active and controlled payload-release. Moreover, hematin and cyanocobalamin have also been encapsulated in hectorite gated clay. These organonanoclays were able to confine the entrapped cargos in an aqueous environment, and effectively release them in the presence of surfactants (as bile salts). A controlled delivery of 49 ± 6 µg hematin/mg solid and 32.7 ± 1.5 µg cyanocobalamin/mg solid was reached. The cargo release profiles of all of the organonanoclays were adjusted to three different release-kinetic models, demonstrating the Korsmeyer-Peppas model with release dependence on (i) the organic-inorganic hybrid system, and (ii) the nature of loaded molecules and their interaction with the support. Furthermore, in vitro cell viability assays were carried out with Caco-2 cells, demonstrating that the organonanoclays are well tolerated by cells at particle concentrations of ca. 50 µg/mL.

7.
Biomater Adv ; 133: 112621, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35039199

RESUMO

Among different hollow nanostructures, the preparation of hollow mesoporous silica nanoparticles (HMSNs) is still a hotspot research field due to their unique properties e.g., large pore sizes and volumes, high drug loading capacity, ease of surface modification, large surface area, and biodegradability. Herein, novel uniform HMSNs are prepared for the first time by a combination of heterogeneous oil-water biphase stratification and simple mono-, di-, and tri-valent etching reactions. The biphase stratification reaction allows self-assembly of reactants at the oil-water interface, while the subsequent step is designed for the efficient selective silica etching under mild conditions. We have studied the effect of cation's valence (NH4+, Ca2+, and Al3+) on the silica etching reaction coupled with the biphase stratification reaction both in the absence and presence of the auxiliary pore expanded agent 1, 3, 5 trimethylbenzene (TMB). In the absence of TMB, the Brunauer-Emmett-Teller (BET) analysis confirms that Al3+ creates materials with the largest pore size (18.0 nm), whereas the use of NH4+ results in the largest pore volume (2.30 cm3/g). The pores generated using Ca2+ and Al3+ as silica etching agents have a volume 2.01 cm3/g and 2.05 cm3/g, respectively. Similar experiments in the presence of TMB leads to the formation of HMSN with larger pore sizes (24 nm and 21.5 nm) and volumes (2.70 cm3/g and 2.12 cm3/g) when using Al3+ and Ca2+, respectively, as etching agents. Drug loading capacity using Langmuir adsorption model indicate our hollow MSN material exhibit the high adsorbing DOX up to 558.23 mg per gram of nanoparticles in pH of 7.2. Furthermore, synthetized NPs exhibited high loading capacity for large protein and biomolecules such as BSA. Our findings confirmed that the charge density of cation has a critical role on selective silica etching in the preparation of HMSNs.


Assuntos
Nanopartículas , Dióxido de Silício , Cátions , Nanopartículas/química , Porosidade , Dióxido de Silício/química , Água
8.
Pharmaceutics ; 13(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209675

RESUMO

Mesoporous silica microparticles functionalized with lactose for the specific release of essential oil components (EOCs) in the small intestine are presented. In vitro and in vivo intestinal models were applied to validate the microparticles (M41-EOC-L), in which the presence of lactase acts as the triggering stimulus for the controlled release of EOCs. Among the different microdevices prepared (containing thymol, eugenol and cinnamaldehyde), the one loaded with cinnamaldehyde showed the most significant Caco-2 cell viability reduction. On the other hand, interaction of the particles with enterocyte-like monolayers showed a reduction of EOCs permeability when protected into the designed microdevices. Then, a microdevice loaded with cinnamaldehyde was applied in the in vivo model of Wistar rat. The results showed a reduction in cinnamaldehyde plasma levels and an increase in its concentration in the lumen of the gastrointestinal tract (GIT). The absence of payload release in the stomach, the progressive release throughout the intestine and the prolonged stay of the payload in the GIT-lumen increased the bioavailability of the encapsulated compound at the site of the desired action. These innovative results, based on the specific intestinal controlled delivery, suggest that the M41-payload-L could be a potential hybrid microdevice for the protection and administration of bioactive molecules in the small intestine and colon.

9.
Nanomaterials (Basel) ; 11(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068155

RESUMO

Essential oil components (EOCs) such as eugenol play a significant role in plant antimicrobial defense. Due to the volatility and general reactivity of these molecules, plants have evolved smart systems for their storage and release, which are key prerequisites for their efficient use. In this study, biomimetic systems for the controlled release of eugenol, inspired by natural plant defense mechanisms, were prepared and their antifungal activity is described. Delivery and antifungal studies of mesoporous silica nanoparticles (MSN) loaded with eugenol and capped with different saccharide gates-starch, maltodextrin, maltose and glucose-against fungus Aspergillus niger-were performed. The maltodextrin- and maltose-capped systems show very low eugenol release in the absence of the fungus Aspergillus niger but high cargo delivery in its presence. The anchored saccharides are degraded by exogenous enzymes, resulting in eugenol release and efficient inhibition of fungal growth.

10.
Nanomaterials (Basel) ; 11(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069171

RESUMO

We report herein a gene-directed enzyme prodrug therapy (GDEPT) system using gated mesoporous silica nanoparticles (MSNs) in an attempt to combine the reduction of side effects characteristic of GDEPT with improved pharmacokinetics promoted by gated MSNs. The system consists of the transfection of cancer cells with a plasmid controlled by the cytomegalovirus promoter, which promotes ß-galactosidase (ß-gal) expression from the bacterial gene lacZ (CMV-lacZ). Moreover, dendrimer-like mesoporous silica nanoparticles (DMSNs) are loaded with the prodrug doxorubicin modified with a galactose unit through a self-immolative group (DOXO-Gal) and modified with a disulfide-containing polyethyleneglycol gatekeeper. Once in tumor cells, the reducing environment induces disulfide bond rupture in the gatekeeper with the subsequent DOXO-Gal delivery, which is enzymatically converted by ß-gal into the cytotoxic doxorubicin drug, causing cell death. The combined treatment of the pair enzyme/DMSNs-prodrug are more effective in killing cells than the free prodrug DOXO-Gal alone in cells transfected with ß-gal.

11.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917595

RESUMO

The development of new food preservatives is essential to prevent foodborne outbreaks or food spoilage due to microbial growth, enzymatic activity or oxidation. Furthermore, new compounds that substitute the commonly used synthetic food preservatives are needed to stifle the rising problem of microbial resistance. In this scenario, we report herein, as far as we know, for the first time the use of the zein protein as a gating moiety and its application for the controlled release of essential oil components (EOCs). The design of microdevices consist of mesoporous silica particles loaded with essential oils components (thymol, carvacrol and cinnamaldehyde) and functionalized with the zein (prolamin) protein found in corn as a molecular gate. The zein protein grafted on the synthesized microdevices is degraded by the proteolytic action of bacterial enzymatic secretions with the consequent release of the loaded essential oil components efficiently inhibiting bacterial growth. The results allow us to conclude that the new microdevice presented here loaded with the essential oil component cinnamaldehyde improved the antimicrobial properties of the free compound by decreasing volatility and increasing local concentration.


Assuntos
Antibacterianos/química , Óleos Voláteis/química , Dióxido de Silício/química , Zeína/química , Porosidade
12.
Pharmaceutics ; 12(11)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233423

RESUMO

In recent times, many approaches have been developed against drug resistant Gram-negative bacteria. However, low-cost high effective materials which could broaden the spectrum of antibiotics are still needed. In this study, enhancement of linezolid spectrum, normally active against Gram-positive bacteria, was aimed for Gram-negative bacteria growth inhibition. For this purpose, a silica xerogel prepared from a low-cost precursor is used as a drug carrier owing to the advantages of its mesoporous structure, suitable pore and particle size and ultralow density. The silica xerogel is loaded with linezolid and capped with ε-poly-l-lysine. The developed nano-formulation shows a marked antibacterial activity against to Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. In comparison to free linezolid and ε-poly-l-lysine, the material demonstrates a synergistic effect on killing for the three tested bacteria. The results show that silica xerogels can be used as a potential drug carrier and activity enhancer. This strategy could provide the improvement of antibacterial activity spectrum of antibacterial agents like linezolid and could represent a powerful alternative to overcome antibiotic resistance in a near future.

13.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899548

RESUMO

Colonic Drug Delivery Systems (CDDS) are especially advantageous for local treatment of inflammatory bowel diseases (IBD). Site-targeted drug release allows to obtain a high drug concentration in injured tissues and less systemic adverse effects, as consequence of less/null drug absorption in small intestine. This review focused on the reported contributions in the last four years to improve the effectiveness of treatments of inflammatory bowel diseases. The work concludes that there has been an increase in the development of CDDS in which pH, specific enzymes, reactive oxygen species (ROS), or a combination of all of these triggers the release. These delivery systems demonstrated a therapeutic improvement with fewer adverse effects. Future perspectives to the treatment of this disease include the elucidation of molecular basis of IBD diseases in order to design more specific treatments, and the performance of more in vivo assays to validate the specificity and stability of the obtained systems.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Administração Oral , Ácidos Aminossalicílicos/uso terapêutico , Animais , Colite/tratamento farmacológico , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/fisiopatologia , Sistemas de Liberação de Medicamentos/tendências , Liberação Controlada de Fármacos , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Mesalamina/uso terapêutico
14.
ACS Sens ; 5(9): 2966-2972, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32844649

RESUMO

A bio-inspired nanodevice for the selective and sensitive fluorogenic detection of 3,4-methylenedioxypyrovalerone (MDPV), usually known as Cannibal drug, is reported. The sensing nanodevice is based on mesoporous silica nanoparticles (MSNs), loaded with a fluorescent reporter (rhodamine B), and functionalized on their external surface with a dopamine derivative (3), which specifically interacts with the recombinant human dopamine transporter (DAT), capping the pores. In the presence of MDPV, DAT detaches from the MSNs consequently, causing rhodamine B release and allowing drug detection. The nanosensor shows a detection limit of 5.2 µM, and it is able to detect the MDPV drug both in saliva and blood plasma samples.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Dopamina , Humanos , Dióxido de Silício
15.
Chem Commun (Camb) ; 55(61): 9039-9042, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292589
16.
ACS Appl Mater Interfaces ; 10(33): 27644-27656, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30040374

RESUMO

Herein, a novel drug photorelease system based on gold nanostars (AuNSts), coated with a mesoporous silica shell and capped with paraffin as thermosensitive molecular gate, is reported. Direct measurements of the surface temperature of a single gold nanostar irradiated using a tightly focused laser beam are performed via a heat-sensitive biological matrix. The surface temperature of a AuNSt increases by hundreds of degrees (°C) even at low laser powers. AuNSts coated with a mesoporous silica shell using a surfactant-templated synthesis are used as chemotherapeutic nanocarriers. Synthetic parameters are optimized to avoid AuNSt reshaping, and thus to obtain nanoparticles with suitable and stable plasmonic properties for near-infrared (NIR) laser-triggered cargo delivery. The mesoporous silica-coated nanostars are loaded with doxorubicin (Dox) and coated with octadecyltrimethoxysilane and the paraffin heneicosane. The paraffin molecules formed a hydrophobic layer that blocks the pores, impeding the release of the cargo. This hybrid nanosystem exhibits a well-defined photodelivery profile using NIR radiation, even at low power density, whereas the nonirradiated sample shows a negligible payload release. Dox-loaded nanoparticles displayed no cytotoxicity toward HeLa cells, until they are irradiated with 808 nm laser, provoking paraffin melting and drug release. Hence, these novel, functional, and biocompatible nanoparticles display adequate plasmonic properties for NIR-triggered drug photorelease applications.


Assuntos
Ouro/química , Sobrevivência Celular , Doxorrubicina , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Células HeLa , Humanos , Nanoestruturas , Porosidade , Dióxido de Silício
17.
Chemistry ; 23(6): 1353-1360, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-27859880

RESUMO

We describe herein the preparation of glucose-sensitive capped mesoporous silica nanoparticles for insulin delivery. The new material consists of an expanded-pore nanometric silica support grafted with 1-propyl-1-H-benzimidazole groups, loaded with fluorescein isothiocyanate-labeled insulin (FITC-Ins) and capped by the formation of inclusion complexes between cyclodextrin-modified glucose oxidase (CD-GOx) and the benzimidazole groups grafted on the mesoporous support. Insulin delivery from the gated material in simulated blood plasma was assessed upon addition of glucose. Glucose is transformed by GOx into gluconic acid, which promoted the dethreading of the benzimidazole-CD-GOx inclusion complexes, allowing cargo release. Small quantities of this support would be needed to release the amount of insulin necessary to decrease diabetic blood glucose concentrations to regular levels.


Assuntos
Portadores de Fármacos/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Insulina/análogos & derivados , Nanopartículas/química , Dióxido de Silício/química , Benzimidazóis/química , Ciclodextrinas/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Gluconatos/metabolismo , Glucose/química , Glucose/metabolismo , Glucose Oxidase/química , Insulina/química , Insulina/metabolismo , Nanoestruturas/química , Porosidade , Espectrometria gama
18.
Chemistry ; 22(38): 13488-95, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27505065

RESUMO

We present herein a novel combination of gated mesoporous silica nanoparticles (MSNs) and surface-enhanced Raman scattering (SERS) for sensing applications. As a proof-of-concept, we show the design of a system comprising MSNs loaded with crystal violet (CV), a molecule with high Raman cross section acting as SERS reporter, and capped with either a suitable DNA sequence for the detection of Mycoplasma genomic DNA or with an aptamer that selectively coordinates cocaine. In both cases the presence of the corresponding target analyte in solution (i.e., genomic DNA or cocaine) resulted in the release of CV. CV delivery was detected by SERS upon adsorption on gold nanotriangles (AuNTs), which display an efficient electromagnetic field enhancement and a high colloidal stability. By using this novel procedure a limit of detection of at least 30 copies DNA per µL was determined for the detection of Mycoplasma genomic DNA, whereas cocaine was detected at concentrations as low as 10 nm.


Assuntos
Cocaína/análise , Mycoplasma/isolamento & purificação , Nanoestruturas/química , Adsorção , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , DNA Bacteriano/análise , Ouro/química , Mycoplasma/genética , Tamanho da Partícula , Polietilenoglicóis/química , Porosidade , Dióxido de Silício/química , Análise Espectral Raman , Propriedades de Superfície
19.
Chem Commun (Camb) ; 49(48): 5480-2, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23660687

RESUMO

An aptamer-capped mesoporous material for the selective and sensitive detection of α-thrombin in human plasma and serum has been prepared and characterised.


Assuntos
Aptâmeros de Nucleotídeos/química , Dióxido de Silício/química , Espectrometria de Fluorescência , Trombina/análise , Humanos , Porosidade , Propilaminas , Rodaminas/química , Silanos/química
20.
ACS Appl Mater Interfaces ; 5(5): 1538-43, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23373746

RESUMO

Mesoporous silica microparticles capped with TTF moieties and containing a ruthenium dye in the pores were used for the turn-on optical detection of the nitroaromatic explosives Tetryl and TNT via a selective pore uncapping and release of the entrapped dye.


Assuntos
Técnicas de Química Analítica/métodos , Substâncias Explosivas/análise , Compostos Heterocíclicos/química , Trinitrotolueno/análise , Técnicas de Química Analítica/instrumentação , Porosidade , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...